Precision Measurements of Densities and Thermal Dilation of Water Between 5° and 80°C

WAYNE GILDSETH,¹ ANTON HABENSCHUSS, and FRANK H. SPEDDING²

Ames Laboratory-USAEC and Department of Chemistry, Iowa State University, Ames, Iowa 50010

The densities of air-free water have been measured with an accuracy of about 3 ppm between 5° and 80°C. Since the relative measurements were more precise than the absolute measurements, the densities were adjusted to bring them into agreement with the defined density at 4°C. This was done by calculating the weight of the water in the dilatometers from the densities of Chappuis as expressed by the Tilton and Taylor equation up to 40°C. Comparisons are made with other literature values, particularly above 40°C, including a close examination of the water density data of Owen et al. Finally, a modified form of the Tilton and Taylor equation was derived to fit the water density data from 0–80°C with a mean absolute deviation of 0.7 \times 10⁻⁶ g/ml. Since we believe these values represent the best data available at this time, a table of water density values calculated from this equation at 0.1° intervals over the entire range of 0–80°C is also presented.

This laboratory has been investigating the thermodynamic properties of aqueous rare earth salt solutions for some years, and as part of this study, precise thermal expansion data were needed. The dilatometric method of measurement chosen to obtain the thermal expansion data required an accurate measurement of thermal expansions of the dilatometers themselves. To this end, water was initially chosen as the calibrating liquid as it was readily available in high purity, and accurate, consistent density data over the required temperature range of 5–80°C seemed to be available.

The water density data of Chappuis (3) covering the temperature range of 0-42°C as represented by the Tilton and Taylor equation (12) are generally accepted as a standard in this country as well as by the International Bureau of Weights and Measures. Furthermore, these data have been extended to 80°C by Jones et al. (6) and Steckel and Szapiro (11), and to 85° C by Owen et al. (9). Unfortunately these sets of data differ by as much as 27×10^{-6} g/ml at 80°C which is approximately 10 times what we believe to be our allowable error for calibration purposes. Owen et al. attributed this difference to the use by Jones et al. of only a linear equation as opposed to a quadratic equation to represent the volumes of their dilatometers as a function of temperature. This criticism appeared reasonable, and thus the density data of Owen et al. which extended the Chappuis data to 85°C was assumed to be correct.

Owen et al. had found that the expression,

$$\Delta V / \Delta t = a + b t_{av} \tag{1}$$

in which $t_{\rm av}$ is the mean temperature of the interval Δt , represented the volume expansions of their dilatometers over the temperature range of 5–85°C. As the borosilicate glass dilatometers used were similar in size and shape to the ones used in this research, it was expected Equation 1 would be obeyed in this research as well. However, when the densities of water determined by Chappuis and by Owen et al. were used as the standards for our data, the $\Delta V/\Delta t$ vs. $t_{\rm av}$ plots obtained were not quite linear. This fact plus the disagreement between the data of Owen et al. and Jones et al. suggested that the densities of water above 40°C should be redetermined, using mercury as a standard.

¹ Present address, Department of Chemistry, Augustana College, Sioux Falls, S.D. 57102.

 2 To whom correspondence should be addressed.

EXPERIMENTAL

Apparatus and Procedure. The experimental apparatus and procedures were similar to those used by Owen et al. and are fully described elsewhere (4). Modifications of the Owen et al. apparatus and procedures included a modified withdrawal pipet making it easier to prevent loss of mercury from the pipet during a withdrawal. The withdrawal arms on the dilatometers were also modified to make it more convenient to prevent condensation of the thermostat water vapor from taking place inside the withdrawal arms at higher temperatures. The degassing and filling apparatus and procedures were similar to those employed by Jones et al. The temperature was controlled to ± 0.001 °C and was measured with a precision of $\pm 0.001^{\circ}$ C over the entire range of 5-80°C using a Leeds and Northrup platinum resistance thermometer calibrated by NBS (1953, 1959) in terms of the International Practical Temperature Scale (1948) and a calibrated Mueller Bridge.

Changes in volume of the contents of the dilatometers were measured with an accuracy of about $\pm 1 \times 10^{-4}$ ml, and since the dilatometers contained about 100 ml of water during the water density measurements, this method should be capable of measuring changes in density with an accuracy of about $\pm 2 \times 10^{-6}$ g/ml. The error in absolute density due to the difficulty of weighing the dilatometers to that precision would be about fivefold greater than this, but since the water density data below 40°C were based on the defined density at 4°C from the Chappuis data, this problem was circumvented.

Two independent series of measurements, G and H, separated by a period of years were made using two different sets of 10 dilatometers. Although, the stopcocks on the dilatometers were individually mated to their shells by grinding, water sometimes leaked out through a stopcock at higher temperatures. Dilatometer number VII, series G, was particularly susceptible to this problem, and consequently its use was discontinued. Leakage from a dilatometer was apparent from the withdrawal data and in most cases air bubbles were observed in the dilatometer following the leakage. All data collected from the dilatometers after leakage had occurred were ignored.

A second problem with this experimental procedure was also observed. Occasionally a small droplet of mercury was left behind in the dilatometer side arm following withdrawal. It was possible to observe these occurrences with the aid of a pencil flashlight, and in almost all cases the droplet could be removed for weighing. Thus once this problem was recognized, it did not constitute a serious experimental obstacle.

The thermal expansions of the dilatometers were determined using mercury as the calibrating liquid together with the densities of mercury as determined by Beattie et al. (1).

Purification of Materials. The mercury used was obtained from the Special Materials Group of the Ames Laboratory of the Atomic Energy Commission, and the purification procedure they used is reported elsewhere (4). Mercury purified by this procedure has been used successfully in polarographs for several years. As a precaution against surface contaminants, the mercury was passed through a pinhole in filter paper before using, and the top layer of mercury in the funnel was then discarded.

The water was obtained from a tin-lined Barnstead Model E-1 conductivity still in which ion exchange purified water was distilled from an alkaline permanganate solution. The distillate was then stored in a tin-lined storage tank which was protected from the atmosphere by a carbon dioxide and dust filter. The specific conductance of the water used was 7×10^{-7} ohm⁻¹ cm⁻¹ prior to degassing.

The measurements were made on normal water, prepared in the manner described above. No isotopic analysis of this water was made. The same can be said of Chappuis' work. The densities presented refer to normal water prepared in any wellequipped laboratory. Variation in the normal abundance of hydrogen and oxygen isotopes might affect the absolute density perhaps in the sixth or one in the fifth decimal place, but the difference between our water and Chappuis' is probably less than that. Such variation should have no effect, within experimental error, on the thermal expansion of water (7, 8, 11). Because our densities were adjusted to be consistent with Chappuis' data, the densities above 40°C reported in this paper are correct for the isotopic composition of the water employed by Chappuis. The isotope effect has been discussed by Kell (7) and Kell and Whalley (8), and it was concluded that it can be neglected.

Calculations. All calculations were made using an IBM 1130 computer or a Marchant Model 1016 PR electronic calculator in which at least 10 digits were carried throughout the calculations. Most of these calculations were checked with an IBM 7074/1401 and/or an IBM 360/40 computer as well as by spot checks using a hand calculator.

Figure 1. Selected dilatometer calibrations

Series G dilatometers I and IX, \bigcirc = Run I and \square = Run II with mercury Series H dilatometers IV and VI, \bigcirc = Run I, \square = Run II, and \triangle = Run III with mercury

RESULTS

Calibration of Dilatometers. In Series G, two calibration runs were made using mercury as the calibrating liquid. Withdrawals were made at approximately 7°C intervals between 20° and 83°C. A weighted least squares calculation was carried out on the calibration data to obtain values of the aand b parameters in Equation 1 for each of the nine dilatometers used. Figure 1 shows some selected dilatometer calibrations.

Equation 1 can be rearranged using the calculus mean value theorem to yield

$$V = V_{25} \left[1 + \dot{A}(t - 25) + B(t - 25)^2 \right]$$
(2)

in which V_{25} is the volume of the dilatometer at 25°C, $A = (a + 25 b/V_{25})$ and $B = 0.5 b/V_{25}$. The values of A and B obtained are listed in Table I for the nine dilatometers, and can be compared with the corresponding dilatometric calibration parameters obtained by other workers (6, 9).

In Series H, three calibration runs using mercury were made, and the temperature range was extended to 5° C. A fourthorder least squares analysis of the volume-temperature data for each of the dilatometers was carried out to obtain parameters V_0 , A', B', and C' in Equation 3, as listed in Table II.

$$V = V_0 + A't + B't^2 + C't^3$$
(3)

Table I. Calibration Parameters of Dilatometers,Equations 2, 4										
Dilatom- eter	$A imes 10^{6}, \ \mathrm{deg^{-1}}$	$B imes 10^{9}, \ \mathrm{deg^{-2}}$	$C \times 10^{11}$, deg^{-3}							
Series G ^a										
I II IV V VI VIII IX X	$\begin{array}{c} 9.675\\ 9.683\\ 9.743\\ 9.660\\ 9.606\\ 9.638\\ 9.623\\ 9.690\\ 9.672\\ \end{array}$	$\begin{array}{c} 2.08\\ 2.64\\ 1.25\\ 2.56\\ 3.48\\ 3.08\\ 3.56\\ 1.69\\ 4.36\end{array}$								
	Sei	ries H								
I II IV V VI VII VIII IX X	$\begin{array}{c} 9.560\\ 9.555\\ 9.531\\ 9.549\\ 9.707\\ 9.602\\ 9.601\\ 9.644\\ 9.637\\ 9.624\end{array}$	3.69 4.52 3.26 3.19 4.07 4.83 4.07 4.09 3.77 3.89	$\begin{array}{r} -1.10 \\ -2.28 \\ -0.25 \\ -1.06 \\ -0.92 \\ -2.44 \\ -1.09 \\ -1.71 \\ -0.83 \\ -2.37 \end{array}$							

^a The stopcock of dilatometer VII, Series G, leaked and this dilatometer was not usable.

Table II.	Series H. C	Calibration Par Equation 3	ameters of [Dilatometers,
Dila- tom- eter	V_{0} , ml	$A' imes 10^3,$ ml deg ⁻¹	$B' imes 10^7$, ml deg ⁻²	$C' \times 10^{9}$, ml deg ⁻³
I II III IV	$\begin{array}{c} 128.82591 \\ 132.36280 \\ 135.26013 \\ 132.22629 \\ 132.22629 \end{array}$	$1.2054 \\ 1.2295 \\ 1.2667 \\ 1.2393 \\ 1$	5.827 8.239 4.666 5.268	-1.42 -3.01 -0.34 -1.40
V VI VII VIII IX X	$\begin{array}{c} 129.13059\\ 125.90231\\ 131.59170\\ 126.50793\\ 130.01452\\ 130.92145\end{array}$	$1.2254 \\ 1.1731 \\ 1.2342 \\ 1.1904 \\ 1.2267 \\ 1.2290$	$6.142 \\ 8.388 \\ 6.439 \\ 6.800 \\ 5.711 \\ 7.423$	$ \begin{array}{r} -1.18 \\ -3.07 \\ -1.44 \\ -2.16 \\ -1.08 \\ -3.10 \\ \end{array} $

For the purpose of comparing the constants to those obtained from a third-order fit, an equation similar in form to Equation 2 can be obtained

 $V = V_{25} \left[1 + A(t - 25) + B(t - 25)^2 + C(t - 25)^3 \right]$ (4)

 Table III.
 Initial Weights of Mercury and Water in Vacuum in Dilatometers, Grams

Dilatom-		Series	3 H						
eter	Series G	Run I	Run III						
Mercury									
I	270.55526	362.99333	340.99699						
II	244.57717	332.17196	335.69787						
III	312.92529	345.16320	342.27254						
IV	326.8376_2	337.5573_3	389.11710						
V	365.99690	356.18734	360.9238_8						
VI	290.4013_8	340.81203	330.35698						
VII		$335.2628_{f 2}$	350.20964						
VIII	316.73164	344.64794	336.80724						
IX	323.15696	$350.6023_{ar{5}}$	346.36865						
X	333.34691	337 , $1835_{ar{3}}$	338.85074						
		Water							
Ι	114.2264	103.68707	104.02073						
II	114.5605	109.05409	108.00196						
III	110.4636	111.0538_{5}	110.33178						
\mathbf{IV}	113.8876	108.97869	103.84754						
V	107.2711	104.2423_{6}	102.8702_2						
VI	117.0116	102.34459	101.94917						
VII		108.1638_2	106.2041_8						
VIII	109.0483	$102.6806\overline{5}$	102.26075						
\mathbf{IX}	112.6379	105.53682	104.84357						
Х	104.0465	107.56456	106.40963						

where $V_{25} = V_0 + 25 A' + 625 B' + 15,625 C', C = C'/V_{25}$, $B = B'/V_{25} + 75 C$, and $A = A'/V_{25} + 50 B - 1875 C$. These constants are listed in Table I.

Densities of Water. Weights of water and mercury in the dilatometers are shown in Tables III and IV. In Series G, one run was made on water following the previously described modifications in experimental procedure. Withdrawals were made every 5°C over the temperature range of 20-80°C. The V_{25} values of the dilatometers were taken to be the mean of the calculated V_{25} values of the 20°, 25°, 30°, 35°, and 40°C withdrawals, basing them upon the water densities calculated according to the Tilton and Taylor equation.

All densities were corrected to what they would have been had the barometric pressure been 1 atm, assuming a value of 45×10^{-6} atm⁻¹ for the compressibility of water (5). Later calculation checks have shown this correction to be within the error limits of the measurements and thus they were omitted in Series H.

Three runs on water were made in Series H, each covering the range of $5-80^{\circ}$ C at 5° intervals. From $5-40^{\circ}$ C the Tilton and Taylor densities were used to calculate the mean weight of water in each dilatometer.

Although the relative densities obtained in Run 2, Series H, were in excellent agreement with Runs 1 and 3, the absolute densities were low by approximately 70×10^{-6} g/ml. This deviation was traced to the nylon stopcock retainers, which had absorbed water from the constant temperature bath during Run 1. Before Runs 1 and 3 there was sufficient time for the stopcock retainer to lose the water absorbed during the previous runs. The loss of water with time was measured so that a correction could be made on Run 2. Although this run was not included in the results, the data, when corrected for the absorption of water, were within experimental error, in agreement with the results of Runs 1 and 3.

Table IV. Weight of Mercury in Vacuum Withdrawn, Grams

Dilatom-		Serie	s H	Dilatom-		Serie	es H
eter	Series G	Run I	Run III	eter	Series G	Run I	Run III
		Temp, °C				Temp., °C	
		5.0394	5.0648			14.9939	15.0235
Ι		21.45166	3.99280	VI		1.04170	1.04485
II		15.47796^{a}	4.72451	VII		1.08984ª	1.09504
III		16.23362^{a}	$3.6029\overline{2}$	VIII		1.04435	$1.0517\overline{5}$
IV		21.70524	3.56697	IX		1.07405	1.08179
V		17.87344^{a}	4.07744	X		1.07570	1.08619
VI		20.76254	$4.9300\overline{5}$			v	Ũ
VII		16.97428	5.29938		20.0405	20.0383	19.8724
VIII		20.93738	7.38242	I	0.52469	1.49867	1.43703
IX		18.05838	4.3994_{8}	II	2,93942	1.53887	1.4718_{2}
x		19.84564^{a}	5.82185	III	1.55327	1.5622_2	$1.5096\overline{2}$
			0	IV	2.75734^{a}	1.53817	1.47527
		9.9957	10.0183	v	1.11780	1.49852	1.43798
т		0.59619	0.59287	VI	3.64768	1.46158	1,40163
ŤT		0.60122	0.59767	VĪI		1.52507	1.46648
		0.66799	0.61159	VIII	3.01327	1.47122	1.40948
TV		0.58860	0 63347	IX	1.41175	1.51112	1.44943
V		0.69896	0.60587	x	1.21795	1.52362	1.45898
v VT		0.57100	0.57977		1.11.00		0
VII		0.5878_{7}	6.0637		25.0324	24 , 8523	24.8785
VIII		0.57677	0.58147	т	1 96020	1 78311	1 84916
IX		0.59512	0.59882	Î	1 93566	1 84036	1.90830
X		0.59417	0.59722	ÎÎ	1 93340	1 88495	1.94150
21		0.00117	0.001-2	IV	1 996244	1.83961	1.89005
		14.9939	15.0235	v	1 92955	1,78431	1.85071
т		1.06810	1 07440	vī	2.01675	1 74636	1.81151
ŤT		1.08020	1 00064	vir	2.01010	1 82616	1.89025
		1 125304	1 12314	VIII	1 91380	1.75346	1.81731
TV		1.08600	1 11274	IX	1 97654	1.80216	1.86715
V		1.07010	1.07919	X	1.8524_3	1.81851	1.88365
		Ŭ	Ū		-	(Contin	ued on next page

404 Journal of Chemical and Engineering Data, Vol. 17, No. 4, 1972

The results of Series G and H are presented in Table V in which the second column contains the mean density values obtained from all the dilatometers at that temperature. The

third column contains the mean absolute deviation, symbolized by Δ , of the individual dilatometric densities from their mean, and the fourth column, symbolized by δ , contains the

			Table IV.	(Continued)			
Dilatom-		Ser	ies H	Dilatom-		Se	ries H
eter	Series G	Run I	Run III	eter	Series G	Run I	Run III
		Temp, °C				Temp, °C	
	30.0158	29.9889	30.0160		54.9592	53.8680	54.8592
т	2 30972	2 24840	2 25250	VI	4.03901	2.73471	3.45887
ÎT	2.30204	2.32638	2.32208	VII		2.8751_{0}	3.60807
ÎÎI	2.28568	2.37553	2.3777_{3}	VIII	3.80765	2.7435_{6}	3.4716_2
IV	2.35993	2.32463	2.29188		3.92683	2.82221	3,56337
v	2.27417	2.25429	2.24289	А	3.05929	2.86000	3.00093
VI	2.38337	2.20364	2.20254		60.0430	59.9434	60.3730
VII		2.3113_{3}	2.30038	Ι	4.16515	4.57767	4.20094
VIII	2.26285	2.21269	2.21204	II	4.14898	4.76801	4.34663
	2.33414	2.2/423	2.2/188	III	4.06828	$4.8645\overline{5}$	4.43917
А	2.18085	2.29928	2.29558	\mathbf{IV}	4.1941_{6}	4.76831	4.24153
	34.8880	34.9030	34.9587	V	4.00344	4.59637	4.17459
т	2.60095	2.45747	2.47728	VI	4.27083	4.49952	4.11189
ĨI	2.58346	2.54977	2.55558		4 01044	4.73556	4.28858
III	2.55479	2.59902	2.60993		4.01941	4.51892	4.12004
IV	2.63606	2.5482_2	2.51435	X	3 86590	4 71089	$\frac{1}{28613}$
V	2.53617	2.46547	2.47156	21	0.00009	4.11002	1.20013
VI	2.66989	2.41198	2.4236_3		64.8867	63.9119	64.7409
	0 5077 -	2.53167	2.52969	Ι	4.20445	3.16774	3.51952
	2.52778	2.42133	2.43325	II	4.1917_{6}	3.30733	$3.6447\overline{1}$
X	2.00915	2.51807	2.49803	III	4.10491	3.36548	3.7193_{1}
21	2.40100	2.01007	2.02119	IV	4.23552	3.30258	3.55447
	39.9704	40.0347	40.0793	V	4.04126	3.17489	3.49892
I	3.03717	2.8634_{5}	2.86391	VI VI	4.31682	3.11374	3.44712
II	3.01604	2.9754_{0}	2.95949		4 05871	3.27923	3,39302
III	2.97698	3.03720	3.02464		4.00071	3.12949 3.9177∢	3 55087
IV	3.0700_2	2.97315	2.90360	X	3 89769	3 26223	3,59317
V	2.94321	2.87310	2.85342		0.00102	0.2020	0.0001
	3.11710	2.8113]	2.80026		69.797_{7}	69.709_2	69.9179
VIII	2 94330	2.82254	2.92305	I	4.48689	4.88095	4.38678
IX	3.03656	2,90270	2.88928	II	4,47987	5.09019	4.53967
X	2.83738	2.93870	2.9217_{5}	III	4.38479	5.19728	4.63626
		44.070-	44.040-	IV	4.52294	5.08744	4.42557
	44.7981	44.9703	44.9405	V	4.30915	4.9036()	4.35913
I_	3.1677_{1}	3.02205	2.98464		4.00948	5 05390	4.29408
	3.15057	3.14119	3.08873	VIII	4.33320	4.81990	4.31323
	3.10404	3.20374	3.10003	IX	4.47486	4.95175	4.42652
V	3.06404	3 03200	2 97125	Х	4.16351	5.02624	4.48247
vī	3.25292	2.96870	2.92369		74 000-	74 010	74 085-
VII	<u>-</u>	3.11939	3.0483_{1}		74.8286	74.0104	74.9851
VIII	3.06828	2.97920	2.9338_{2}	I	4.83619	4.35918	4.52472
\mathbf{IX}	3.16833	3.06329	3.01046		4.82786	4.54792	4.68446
X	2.95544	3.10289	3.04553		4.72140	4.63106	4.78516
	49 8186	49 9330	49 8980	I V V	4.87105	4.04072	4.30032
т	2 57521	2 98050	2 2871	vī	4 96381	4 28992	4 42857
л тт	3 55650	3,49903	3.20118	VII	1.00001	4.51687	4.61891
III	3 49575	3,49432	3.47032	VIII	4.66718	4.30503	4.4438_{2}
ĪV	3.60760	3.4228_3	3.32518	\mathbf{IX}	4.81802	4.42687	4.56167
\mathbf{v}	3.4491_{7}	3,30288	3.26938	X	4.4800_2	4.4917_{7}	4.6178_{6}
VI	3.6673_{2}	3.23294	3.21629		79 6569	70 1594	79, 361 7
VII		3.4004_8	3.35695	_	10.0002	10,1024	10.0017
VIII	3.4571_{6}	3.2478_8	3.22929		4.86838	4.20879	4.07864
	3.56907	3.33678	3.31723		4,80294	4.39438	4.22323
л	3.32001	3.38213	3.35333		4 80301	4,47902	±.51103 4 1080≠
	54.9592	53.8680	54.8592	v	4.66159	4.22490	4.04934
I	3.92287	2.78056	3.53447	VI	4,98587	4.13899	3.99325
II	3.92191	2.89700	3.65396	VII	•	$4.3597 m \overset{\circ}{8}$	4.16399
III	3.85023	2.9570_{0}	3.73306	VIII	4.68888	4.15654	4.00820
	3.96838	2.89510	3.56712	IX	4.84274	4.2724_{3}	4.11124
v	3.79629	2.79016	3.51347	Х	4.50032	4.33573	4.16474
^a A drople	et of mercury wa	s left behind during	g withdrawal. Th	ese values were no	ot used.		

Journal of Chemical and Engineering Data, Vol. 17, No. 4, 1972 405

Table V.	Experimental	Densities	of	Water
----------	--------------	-----------	----	-------

Temp, °C	Exptl density, g/ml	$\Delta^{a} \times 10^{6},$ g/ml	$egin{array}{ccc} \delta^b imes 10^6, \ extbf{g/ml} \end{array}$	Calcd density, ¢ g/ml	$f^{d} imes 10^{ m s}, \ { m g/ml}$
		Seri	es G		
20, 040	0 0082246	0.8	-0.6	0.0082253	-0.7
20.010	0.0070663	1.2	-0.0	0.9970669	-0.6
20.002	0.0056744	0.8	0.0	0.0056735	-0.0
24 888	0.0041022	0.8	0.9	0.0041022	0.9
34.000	0.0022502	0.0	0.4	0.0022506	0.0
09.970 44 700	0.9922093	0.0	0.8	0.9922090	-0.3
44,790	0.9900298	1.2	2.0	0.9903300	-0.8
49.019 54.050	0.9857486	1.0	10 5	0.9661317	-1.4
04.909 60 042	0.9007400	1.7	12.0	0.9897488	0.1
64 997	0.9802108	2.0	22.4	0.9802109	-0.1
04.007 80.709	0.9800008	2.1	50.1	0.9800000	0.2
09.798	0.9779213	4.1	20.0	0.9779190	2.0 9.1
74.829 70.656	0.9749873	2.9	109.7	0.9749844	0.1
79.000	0.9720473	3.0	108.7	0.9720428	4.0
		Series E	I, Run 1		
5.039	0.9999907	0.5	-0.5	0.9999912	-0.5
9.996	0.9997276	0.6	-0.8	0.9997285	-0.9
14.994	0.9991285	0.8	-1.0	0.9991295	-1.0
20.038	0.9982257	0.6	0.0	0.9982257	0.0
24.852	0.9971132	0.5	0.3	0.9971129	0.3
29.989	0.9956821	0.5	0.5	0.9956817	0.5
34.903	0.9940973	0.3	0.5	0.9940970	0.2
40.035	0.9922348	0.6	0.7	0.9922351	-0.3
44.970	0.9902593	0.7	3.4	0.9902587	0.6
49.934	0.9881005	1.0	7.3	0.9880996	0.9
53.868	0.9862725	1.6	10.6	0.9862729	-0.4
59.943	0.9832614	1.8	21.5	0.9832621	-0.7
63.912	0.9811777	2.5	33.8	0.9811767	1.0
69.709	0.9779700	2.5	53.9	0.9779694	0.6
74.616	0.9751101	3.0	75.1	0.9751109	-0.8
79.152	0.9723554	3.0	101.1	0.9723554	0.0
		Series E	I, Run 3		
5.065	0.9999904	0.4	-0.4	0.9999908	-0.4
10.018	0.9997268	0.6	0.3	0.9997265	0.3
15.024	0.9991246	0.4	-0.4	0.9991250	-0.4
19.872	0.9982597	0.7	-0.2	0.9982599	-0.2
24.879	0.9971061	0.5	-0.1	0.9971062	-0.1
30.016	0.9956734	0.4	0.0	0.9956735	-0.1
34.959	0.9940779	0.3	0.2	0.9940779	0.0
40.079	0.9922175	0.7	0.5	0.9922180	-0.5
44.947	0.9902681	1.2	2.2	0.9902686	-0.5
49,899	0.9881154	1.5	6.2	0.9881154	-0.1
54.859	0.9857969	1.5	12.2	0.9857971	-0.2
60 373	0.9830388	1.8	21.2	0.9830408	-2.0
64.741	0.9807277	2.5	33.3	0,9807296	-2.0
69.918	0.9778503	3.2	54.0	0.9778504	-0.2
74 985	0.9748890	3.8	75.9	0,9748909	-1.9
79.362	0.9722252	4.1	101.9	0.9722257	-0.5
^a The mean absolute d calculated density.	eviation. ^b Experimental	density - Tiltor	n and Taylor ed	quation. ^c Equation 5.	^d Experimental density -

difference between the experimental mean densities and the densities as calculated from the unmodified Tilton and Taylor equation. The Tilton and Taylor equation, of course, is only valid for the temperature range $0-40^{\circ}$ C.

DISCUSSION

A modified form of the Tilton and Taylor equation,

$$1 - d = \frac{(t - 3.9863)^2(t + 288.9414)}{508929.2(t + 68.12963)} - \frac{1}{2}$$

 $0.011445 \exp(-374.3/t)$ (5)

was derived to fit the experimental density of water data of

Chappuis and this research over the entire 0-80°C range. Except for the exponential term, Equation 5 is identical to the Tilton and Taylor equation, and below 40°C the exponential term is negligible.

The densities as calculated from Equation 5 at the experimental temperatures are given in Table V. The differences between the experimental densities and those calculated from Equation 5 are given under the heading, f, in Table V. Equation 5 fits the experimental data with a mean absolute deviation of 0.7×10^{-6} g/ml.

Table VI contains densities calculated from Equation 5 and some selected literature values. The experimental densities from this research differ from those of Smith as reported in Owen et al. by as much as 13×10^{-6} g/ml at 80°C. Since both sets of measurements strived for an accuracy of ± 3 \times

Table VI.	Comparison o	f Experime	ental and	Literature
	Densities o	f Water, C	J/MI	

\mathbf{T}_{emp}	d^a	d^b	d^{c}	d^{d}
40.000	0.992248	0.992247	0.992248	
45.000	0.990246	0.990244	0.990246	
50.000	0.988070	0.988065	0.938069	0.988073
55.000	0.985729	0.985722	0.985727	
60.000	0.983233	0.983223	0.983233	0.983239
65.000	0.980589	0.980578	0.980585	
70.000	0.977804	0.977791	0.977801	0.977813
75.000	0.974882	0.974870	0.974884	
80.000	0.971829	0.971816	0.971834	0.971843

^a This research, Equation 5. ^b Owen et al. (Smith's values) (θ) . ^c Smith's recalculated values (this paper). ^d Jones et al. (Taylor's values) (6).

 10^{-6} g/ml or better, and since both used similar experimental methods, it is difficult to attribute the difference of 13×10^{-6} g/ml entirely to experimental errors.

Initially it was considered possible that the mercury density data of Beattie et al. used for calibration purposes in this research were not consistent with the water density data of Chappuis. Fortunately Chappuis also measured densities of mercury using the same apparatus as was used for part of his water density measurements (2). A comparison of the two sets mercury density data indicated that this factor did not explain the discrepancy with Smith's data.

As a second alternative, Smith's data (9, 10), was closely examined. Smith calibrated his dilatometers with water assuming the water densities calculated from the Tilton and Taylor equation to be correct from $0-45^{\circ}$ C. He made one run on water at approximately 10° intervals from $5-85^{\circ}$ C and used the data at approximately 5° , 15° , 25° , 35° , and 45° C as his calibration points. Thus he had four $\Delta V/\Delta t$ values per dilatometer with which to obtain the *a* and *b* parameters of Equation 1. Obviously this placed considerable reliance on each single $\Delta V/\Delta t$ value, and herein lies part of the problem.

First, the data of Chappuis upon which the Tilton and Taylor equation is based did not extend beyond 42°C. Consequently, the density of water used by Smith at 45°C was based upon an

extrapolation via the Tilton and Taylor equation which yields low-density values at temperatures greater than 42°C. Second, Chappuis had only nine density of water determinations above 35° C and seven of these values have values greater than those calculated according to the Tilton and Taylor equation (12). In general, the densities of these nine values lie slightly above that which would be calculated using the Tilton and Taylor equation.

For the two highest calibration temperatures used by Smith, i.e., 34.938° and 44.935° C, the densities of water calculated using Equation 5 are 0.3 and 2.8×10^{-6} g/ml larger than those calculated using the Tilton and Taylor equation, respectively. These are certainly minor differences, but they set the calibration slope which especially affects the densities at the higher temperatures. When Smith's data were recalculated using

Figure 2. Comparison of Smith's recalculated data with this research

Temp.		Tenths of degrees									_
°C		0	1	2	3	4	5	6	7	8	9
0	0.999	8676	8743	8808	8871	8933	8993	9051	9107	9161	9214
1		9265	9314	9362	9407	9451	9493	9534	9572	9610	9645
2		9678	9710	9740	9769	9796	9821	9844	9866	9886	9905
3		9922	9937	9950	9962	9972	9981	9988	9993	9997	9999
4	1,000	0000	*9999	*9996	*9992	*9986	*9979	*9970	*9960	*9948	*9934
5	0.999	9919	9902	9884	9864	9843	9820	9796	9770	9742	9713
6		9683	9651	9618	9583	9546	9508	9469	9428	9386	9342
7		9297	9250	9202	9153	9102	9049	8995	8940	8883	8825
8		8765	8704	8642	8578	8513	8446	8378	8309	8238	8166
9		8092	8017	7941	7863	7784	7704	7622	7539	7454	7368
10		7281	7193	7103	7011	6919	6825	6730	6633	6536	6437
11		6336	6234	6131	6027	5922	5815	5706	5597	5486	5374
12		5261	5146	5030	4913	4795	4675	4555	4432	4309	4184
13		4059	3931	3803	3674	3543	3411	3278	3143	3007	2870
14		2732	2593	2453	2311	2168	2024	1879	1732	1584	1436
15		1285	1134	0982	0828	0674	0518	0361	0202	0043	*9882
16	0.998	9721	9558	9394	9229	9062	8895	8726	8557	8386	8214
17		8041	7867	7691	7515	7337	7159	6979	6798	6616	6433
18		6248	6063	5877	5689	5501	5311	5120	4928	4735	4541
19		4346	4150	3953	3754	3555	3355	3153	2950	2747	2542
20		2336	2130	1922	1713	1503	1292	1080	0867	0653	0437
$\overline{21}$		0221	0004	*9786	*9567	*9346	*9125	*8903	*8679	*8455	*8230

Table VII. (Continued)

Temn						Tenths (of degrees				
°C		0	1	2	3	4	5	6	7	8	9
22	0.997	8003	7776	7547	7318	7088	6856	6624	6390	6156	5921
23		5684	5447	5208	4969	4729	4487	4245	4002	3758	3512
24		3266	3019	2771	2522	2272	2021	1769	1516	1262	1007
25		0751	0494	0237	*9978	*9718	*9458	*9196	*8934	*8671	*8406
26	0.996	8141	7875	7608	7340	7071	6801	6530	6258	5986	5712
27		5438	5162	4886	4608	4330	4051	3771	3490	3209	2926
28 20	0.005	2042	2338 9464	2072 9169	1780 8874	1499 8578	8281	0922 7983	7684	$\frac{0341}{7385}$	7084
20	0.000	6783	6481	6178	5874	5569	5264	4957	4650	4341	4032
30		3722	3411	3100	2787	2474	2160	1845	1529	1212	0894
32		0576	0257	*9937	*9616	*9294	*8971	*8648	*8323	*7998	*7672
33	0.994	7345	7018	6689	6360	6030	5699	5367	5035	4701	4367
34		4032	3696	3360	3022	2684	2345	2005	1664	1323	0980
35		0637	0293	*9949	*9603	*9257	*8910	*8562	*8213	*7864	*7513
36	0.993	7162	6810	6458	6104	5750	5395	5039	4683	4325	3967
37	0.000	3608	3248	2888	2527	2165	1802	1438	1074	0709	0343
38 20	0.992	9976 6267	9009 5802	9240 5517	5140	8002 4763	8131 4385	4006	1000	7010 3946	2865
39 40		0402	9101	1717	1222	0048	4563	0177	*0700	*0409	*0012
40	0 991	2400 8624	2101 8234	7844	7459	7060	6667	6273	5879	5484	5088
42	0.391	4692	4294	3896	3498	3098	2698	2297	1896	1493	1090
43		0687	0282	*9877	*9471	*9065	*8657	*8249	*7841	*7431	*7021
44	0.990	6610	6199	5786	5373	4960	4545	4130	3714	3298	2881
45		2463	2044	1625	1205	0784	0363	*9941	*9518	*9095	*8671
46	0.989	8246	7820	7394	6967	6540	6111	5683	5253	4823	4392
47		3960	3528	3095	2661	2227	1792	1356	0919	0482	0045
48	0.988	9606	9167	8727	8287	7846	7404	6962	6518	6075	5630
49		5185	4739	4293	3840	3398	2950	2001	2031	1000	*****
50	0.087	0698	0245	*9792	*9339	*8884	*8429	*7974 2291	*7517	*7060 9455	*6603
51 52	0.987	0140	1061	0595	4700	*9661	*9193	8725 ***	2919 *8256	2400 *7786	*7316
53	0.986	6844	6373	5900	5427	4954	4480	4005	3529	3053	2576
5 4		2099	1621	1142	0663	0183	*9703	*9221	*8740	*8257	*7774
55	0.985	7291	6806	6321	5836	5350	4863	4376	3888	3399	2910
56		2420	1930	1439	0947	0455	*9962	*9468	*8974	*8480	*7984
57	0.984	7488	6992	6495	5997	5498	5000	4500	4000	3499	2998
58	0.000	2496	1993	1490	0986	0482	*9977	*9471	*8965	*8458	7951
59	0.983	7443	6934	6425	5915	5405	4894	4382	3870	3357	2844
60	0.000	2330	1815	1300	0785	0268	*9751	*9234	*8716	*8197	*7678
62 62	0.982	1028	1402	0117	0347	2073 *0810	4000 *0901	4027 *8769		2979 *7709	2404 *7171
62 63	0.981	6639	6107	5575	5042	4508	3974	3439	2903	2367	1831
64	0.001	1294	0756	0217	*9679	*9139	*8599	*8059	*7517	*6976	*6433
65	0.980	5891	5347	4803	4259	3714	3168	2622	2075	1527	0980
66		0431	*9882	*9332	*8782	*8231	*7680	*7128	*6576	*6023	*5469
67	0.979	4915	4361	3806	3250	2693	2137	1579	1021	0463	*9904
68	0.978	9344	8784	8223	7662	7100	6538	5975	5411	4847	4283
69		3717	3152	2586	2019	1451	0884	0315	*9746	*9177	*8607
70	0.977	8036	7465	6893	6321	5748	5175	4601	4027	3452	2876
71	0.076	2300	1/24	1147	0009	*9991 4170	*9412 2505	*8833	*8203	*7073	1952
74 73	0.970	0667	0920 0079	*9492	*8903	*8314	*7725	*7135	*6544	*5953	*5362
74	0.975	4770	4177	3584	2990	2396	1802	1206	0610	0014	*9417
75	0.974	8820	8222	7624	7025	6425	5825	5225	4624	4022	3420
76	0.011	2818	2214	1611	1007	0402	*9797	*9191	*8585	*7978	*7371
77	0.973	6763	6154	5546	4936	4326	3716	3105	2493	1882	1269
78		0656	0042	*9428	*8814	*8199	*7583	*6967	6351	*5733	*5116
79	0.972	4498	3879	3260	2640	2020	1399	0778	0156	*9534	*8911
80	0.971	8288	7664	7040	6415	5790	5164	4537	3910	3283	2655

these density values, better agreement was obtained with the density of water values reported in this paper. This particular correction accounts for about one half of the differences. The remainder of the change in densities upon recalculation results because Smith rounded off numbers at each stage in his calculations as opposed to the retention of 10 digits at all steps in the computerized recalculations. in this plot reflect the standard deviation of the mean. Smith made a second approximation in his original calculations, using all of his data for the purpose of obtaining calibration parameters for his dilatometers, and consequently the error in these densities will be less. A second calculation will have some effect on the first approximation data shown in Figure 2, but since such a calculation also smooths the data, it was felt to be less satisfactory regarding reliable error determinations. One of the reasons for the appreciable uncertainty in the two highest

Smith's recalculated data above 30° C are compared in Figure 2 with the δ values obtained in this research. The error circles

temperatures of Smith is that prior to the 75° C withdrawal, two of his dilatometers leaked, leaving only four dilatometric measurements at 75° and 85° C. The recalculated Smith values are listed in the fourth column of Table VI. Similar criticism of the Owen et al. densities has been voiced by Kell and Whalley (8).

For the convenience of those workers requiring accurate densities of water between 0° and 80°C, a table of water densities calculated from Equation 5 is presented in Table VII. Although the densities in this table are quoted to the seventh decimal place, it should be realized that at least above 40° C they are uncertain in the sixth decimal place with the uncertainty increasing with temperature.

LITERATURE CITED

- Beattie, J. A., Blaisdell, B. E., Kaye, J., Gerry, H. T., Johnson, C. A., Pro. Am. Acad. Arts Sci., 74, 371 (1941).
- (2) Chappuis, P., Trav. Memoires Bur. Intern. Meas., 13, C10 (1907).
- (3) Chappuis, P., ibid., D40 (1907).
- (4) Gildseth, W. M., PhD Thesis, Iowa State University, 1964.

- (5) Harned, H. S., Owen, B. B., "The Physical Chemistry of Electrolytic Solutions," 3rd ed., Reinhold, New York, N.Y., 1958.
- (6) Jones, G., Taylor, E. F., Vogel, R. C., J. Amer. Chem. Soc., 70, 966 (1948).
- (7) Kell, G. S., J. Chem. Eng. Data, 12, 66 (1967).
- (8) Kell, G. S., Whalley, E., Phil. Trans. Roy. Soc., 258a, 565 (1965).
- (9) Owen, B. B., White, J. R., Smith, J. S., J. Amer. Chem. Soc., 78, 3561 (1956).
- (10) Smith, J. S., PhD Thesis, Yale University, New Haven, Conn., 1944.
- (11) Steckel, F., Szapiro, S., Trans. Faraday Soc., 59, 331 (1963).
 (12) Tilton, L. W., Taylor, J. K., J. Res. Nat. Bur. Stand., 18, 205 (1937).

RECEIVED for review October 5, 1971. Accepted June 28, 1972. Work was performed in the Ames Laboratory of the U.S. Atomic Energy Commission (Contribution No. 3003), and some of the reduction of data was carried out at Augustana College, S.D. This paper is based in part on the PhD dissertation of W. M. Gildseth submitted to the Graduate Faculty of Iowa State University of Science and Technology, Ames, Iowa, in 1964. An independent part of these data was obtained by A. Habenschuss as part of his PhD dissertation.

Heat of Formation of Nitroxy Fluoride(G)

ROBERT T. REWICK,¹ RALPH ANDERSON, and RICHARD O. MacLAREN United Technology Center, Division of United Aircraft Corp., Sunnyvale, CA 94088

The heat of the reaction $F_2(g)$ + NaNO₃(s) = O₂NOF(g) + NaF(s) has been measured calorimetrically, and from the resulting data, the standard heat of formation of O₂NOF(g), ΔH_{1295}° , has been established as +2.5 ± 0.5 kcal/mol.

Although the physical and chemical properties of nitroxy fluoride have been extensively studied, thermochemical data on the heat of formation of this potentially explosive O-F bonded species have not been published until recently. While work at United Technology Center on this subject was in process, Talakin et al. (7) reported a heat of formation of -4.2 \pm 0.9 kcal/mol for gaseous O₂NOF at 21°C. However, bond energy estimates yielded a less exothermic value for the derived heat of formation of nitroxy fluoride than the value reported by the Russian workers, and one of the preliminary experimental approaches used in this work, which was similar to the one they used, produced inconsistent results. In an attempt to obtain a more accurate heat of formation value for nitroxy fluoride, which would be useful in describing the O-F bond energy in related compounds, a calorimetric program was selected to minimize side effects inherent in similar reactive systems.

EXPERIMENTAL APPROACH

Several possible reaction systems potentially applicable to the determination of the $\Delta H_{f^{298}}$ ° for O₂NOF(g) by calorimetric methods have been reported. Each of the following systems was investigated to determine the most effective procedure. Preliminary emphasis was placed on the reproducibility of welldefined products from a simple reaction system which could be well characterized analytically.

¹ Present address, Stanford Research Institute, Menlo Park, CA 94025. To whom correspondence should be addressed.

The original preparation of nitroxy fluoride (1, 5) involved the direct fluorination of nitric acid according to the following equation:

$$HNO_{3}(l,aq) + F_{2}(g) \rightarrow O_{2}NOF(g) + HF(g)$$
(1)

In principle, Reaction 1 is ideally suited for calorimetric study; however, experimental difficulties associated with the degree of solubility of the reaction products in the nitric acid, and the application of the correct heat effect values for this process were found to limit the usefulness of this reaction for calorimetric study.

Skiens and Cady (6) have reported that the spark-induced decomposition of nitroxy fluoride yielded only nitrosyl fluoride and oxygen according to the following stoichiometry:

$$O_2NOF(g) \rightarrow NOF(g) + O_2(g)$$
 (2)

Because of the simple products, Reaction 2 appeared promising from a calorimetric standpoint. However, in tests employing nichrome fuse wire to initiate gas phase decomposition in a modified combustion bomb system, the reaction was more complex than previously reported, with variable formation of nitrogen dioxide, nitric oxide, and nitryl fluoride in conjunction with nitrosyl fluoride and oxygen.

Nitroxy fluoride has been reported (1) to decompose with aqueous potassium hydroxide:

$$O_2NOF(g) + 2OH^{-}(aq) \rightarrow \frac{1}{2}O_2(g) + F^{-}(aq) + NO_3^{-}(aq) + H_2O(l)$$
 (3)

The applicability of Reaction 3 was investigated by hydrolyzing

Journal of Chemical and Engineering Data, Vol. 17, No. 4, 1972 409